2.5.2 異る型のデータの統合その2

問題 2.84

問題 2.83 の raise 演算を使って apply-generic 手続きを修正し、本節で論じたように順次に高めていく方法で、引数を同じ型になるまで、強制変換するようにせよ。

raise を使用する convert-to-same-type 手続きを用意し、これを apply-generic に組み込みます。
型の階層は height-table を用意して、これに定義します。

(put-height 'scheme-number 10)
(put-height 'rational 20)
(put-height 'complex 30)

値は適当ですが、値の大小関係は重要です。
以下全ソース。

(define *table* '())

(define (get op type)
  (let ((item (filter (lambda (x)
                        (and (eq? (car x) op)
                             (equal? (cadr x) type)))
                      *table*)))
    (if (null? item)
        #f
        (caddr (car item)))))

(define (put op type item)
  (set! *table*
        (cons (list op type item)
              (filter (lambda (x)
                        (not (and (eq? (car x) op)
                                  (equal? (cadr x) type))))
                      *table*))))

;;;;;

(define *coercion-table* '())

(define (get-coercion type1 type2)
  (let ((item (filter (lambda (x)
                        (and (eq? (car x) type1)
                             (eq? (cadr x) type2)))
                      *coercion-table*)))
    (print ";;item=" item)
    (if (null? item)
        #f
        (caddr (car item)))))

(define (put-coercion type1 type2 proc)
  (set! *coercion-table*
        (cons (list type1 type2 proc)
              (filter (lambda (x)
                        (not (and (eq? (car x) type1)
                                  (eq? (cadr x) type2))))
                      *coercion-table*))))

;;;;;

(define *conversion-table* '())

(define (get-conversion conv type1)
  (let ((item (filter (lambda (x)
                        (and (eq? (car x) conv)
                             (eq? (cadr x) type1)))
                      *conversion-table*)))
    (if (null? item)
        #f
        (caddr (car item)))))

(define (put-conversion conv type proc)
  (set! *conversion-table*
        (cons (list conv type proc)
              (filter (lambda (x)
                        (not (and (eq? (car x) conv)
                                  (eq? (cadr x) type))))
                      *conversion-table*))))

;;;;;

(define *height-table* '())

(define (get-height type)
  (let ((item (filter (lambda (x)
                        (and (eq? (car x) type)))
                      *height-table*)))
    (if (null? item)
        #f
        (cadr (car item)))))

(define (put-height type height)
  (set! *height-table*
        (cons (list type height)
              (filter (lambda (x)
                        (not (and (eq? (car x) type)
                                  (eq? (cadr x) height))))
                      *height-table*))))

;;;;;

(define (attach-tag type-tag contents)
  (if (eq? type-tag 'scheme-number)
      contents
      (cons type-tag contents)))

(define (type-tag datum)
  (cond ((number? datum) 'scheme-number)
        ((pair? datum) (car datum))
        (else
         (error "Bad tagged datum -- TYPE-TAG" datum))))

(define (contents datum)
  (cond ((number? datum) datum)
        ((pair? datum) (cdr datum))
        (else
         (error "Bad tagged datum -- CONTENTS" datum))))

;;;;;

(define (convert-to-same-type arg1 arg2)
  (let ((type1 (type-tag arg1))
        (type2 (type-tag arg2)))
    (let ((h1 (get-height type1))
          (h2 (get-height type2)))
      (print ";;CONVERT-TO-SAME-TYPE arg1=" arg1 " arg2=" arg2)
      (cond ((< h1 h2)
             (convert-to-same-type (raise arg1) arg2))
            ((> h1 h2)
             (convert-to-same-type arg1 (raise arg2)))
            (else
             (list arg1 arg2))))))

(define (apply-generic op . args)
  (let ((type-tags (map type-tag args)))
    (let ((proc (get op type-tags)))
      (print ";;APPLY-GENERIC op=" op " args=" args)
      (if proc
          (begin
            (print ";;APPLY proc=" proc " op=" op " args=" args)
            (apply proc (map contents args)))
          (if (= (length args) 2)
              (let ((type1 (car type-tags))
                    (type2 (cadr type-tags))
                    (a1 (car args))
                    (a2 (cadr args)))
                (if (eq? type1 type2)
                    (error "op is not defined for the type -- APPLY-GENERIC" (list op type1))
                    (let ((conv-args (convert-to-same-type a1 a2)))
                      (if conv-args
                          (apply-generic op (car conv-args) (cadr conv-args))
                          (error "convert error -- APPLY-GENERIC" type1 type2))))))))))

(define (apply-generic-kai op . arguments)
  (define (arg1 args) (car args))
  (define (arg2 args) (cadr args))
  (define (iter args)
    (print ";;APPLY-GENERIC-KAI args=" args)
    (if (= (length args) 2)
        (apply-generic op (arg1 args) (arg2 args))
        (let ((val (apply-generic op (arg1 args) (arg2 args))))
          (iter (cons val (cddr args))))))
  (iter (car arguments)))

;;;;;

(define (install-scheme-number-package)
  ;; システムの他の部分へのインターフェース
  (define (tag x)
    (attach-tag 'scheme-number x))
  (put 'add '(scheme-number scheme-number)
       (lambda (x y) (tag (+ x y))))
  (put 'sub '(scheme-number scheme-number)
       (lambda (x y) (tag (- x y))))
  (put 'mul '(scheme-number scheme-number)
       (lambda (x y) (tag (* x y))))
  (put 'div '(scheme-number scheme-number)
       (lambda (x y) (tag (/ x y))))
  (put 'equ? '(scheme-number scheme-number)
       (lambda (x y) (tag (= x y))))
  (put '=zero? '(scheme-number)
       (lambda (x) (zero? x)))
  (put 'exp '(scheme-number scheme-number)
       (lambda (x y) (tag (expt x y))))
  
  (put 'make 'scheme-number
       (lambda (x) (tag x)))
  'done)

(define (install-rational-package)
  ;; 内部手続き
  (define (numer x) (car x))
  (define (denom x) (cdr x))
  (define (make-rat n d)
    (if (= d 0)
        (error "zero denominator -- MAKE-RAT")
        (let ((g (gcd n d)))
          (cons (/ n g) (/ d g)))))
  (define (add-rat x y)
    (make-rat (+ (* (numer x) (denom y))
                 (* (numer y) (denom x)))
              (* (denom x) (denom y))))
  (define (sub-rat x y)
    (make-rat (- (* (numer x) (denom y))
                 (* (numer y) (denom x)))
              (* (denom x) (denom y))))
  (define (mul-rat x y)
    (make-rat (* (numer x) (numer y))
              (* (denom x) (denom y))))
  (define (div-rat x y)
    (make-rat (* (numer x) (denom y))
              (* (denom x) (numer y))))
  (define (equ? x y)
    (and (= (numer x) (numer y))
         (= (denom x) (denom y))))
  (define (=zero? x) (zero? (numer x)))
  
  ;; システムの他の部分へのインターフェース
  (define (tag x) (attach-tag 'rational x))
  (put 'add '(rational rational)
       (lambda (x y) (tag (add-rat x y))))
  (put 'sub '(rational rational)
       (lambda (x y) (tag (sub-rat x y))))
  (put 'mul '(rational rational)
       (lambda (x y) (tag (mul-rat x y))))
  (put 'div '(rational rational)
       (lambda (x y) (tag (div-rat x y))))
  (put 'equ? '(rational rational)
       (lambda (x y) (equ? x y)))
  (put '=zero? '(rational)
       (lambda (x) (=zero? x)))
  (put 'numer '(rational) numer)
  (put 'denom '(rational) denom)
  
  (put 'make 'rational
       (lambda (n d) (tag (make-rat n d))))
  'done)

(define (install-rectangular-package)
  ;; 内部手続き
  (define (real-part z) (car z))
  (define (imag-part z) (cdr z))
  (define (make-from-real-imag x y) (cons x y))
  (define (magnitude z)
    (sqrt (+ (square (real-part z))
             (square (imag-part z)))))
  (define (angle z)
    (atan (imag-part z) (real-part z)))
  (define (equ? z1 z2)
    (and (= (real-part z1) (real-part z2))
         (= (imag-part z1) (imag-part z2))))
  (define (=zero? z)
    (and (zero? (real-part z)) (zero? (imag-part z))))

  (define (make-from-mag-ang r a) 
    (cons (* r (cos a)) (* r (sin a))))
  
  ;; システムの他の部分とのインターフェース
  (define (tag x) (attach-tag 'rectangular x))
  (put 'real-part '(rectangular) real-part)
  (put 'imag-part '(rectangular) imag-part)
  (put 'magnitude '(rectangular) magnitude)
  (put 'angle '(rectangular) angle)
  (put 'equ? '(rectangular rectangular)
       (lambda (z1 z2) (equ? z1 z2)))
  (put '=zero? '(rectangular)
       (lambda (z) (=zero? z)))
   
  (put 'make-from-real-imag 'rectangular 
       (lambda (x y) (tag (make-from-real-imag x y))))
  (put 'make-from-mag-ang 'rectangular 
       (lambda (r a) (tag (make-from-mag-ang r a))))
  'done)

(define (install-polar-package)
   ;; 内部手続き
  (define (magnitude z) (car z))
  (define (angle z) (cdr z))
  (define (make-from-mag-ang r a) (cons r a))
  (define (real-part z)
    (* (magnitude z) (cos (angle z))))
  (define (imag-part z)
    (* (magnitude z) (sin (angle z))))
  (define (equ? z1 z2)
    (and (= (magnitude z1) (magnitude z2))
         (= (angle z1) (angle z2))))
  (define (=zero? z) (zero? (magnitude z)))
  (define (make-from-real-imag x y) 
    (cons (sqrt (+ (square x) (square y)))
          (atan y x)))

   ;; システムの他の部分とのインターフェース
  (define (tag x) (attach-tag 'polar x))
  (put 'real-part '(polar) real-part)
  (put 'imag-part '(polar) imag-part)
  (put 'magnitude '(polar) magnitude)
  (put 'angle '(polar) angle)
  (put 'equ? '(polar polar)
       (lambda (z1 z2) (equ? z1 z2)))
  (put '=zero? '(polar)
       (lambda (z) (=zero? z)))
  
  (put 'make-from-real-imag 'polar
       (lambda (x y) (tag (make-from-real-imag x y))))
  (put 'make-from-mag-ang 'polar 
       (lambda (r a) (tag (make-from-mag-ang r a))))
  
  'done)

(define (install-complex-package)
  ;; 直交座標と極座標パッケージから取り入れた手続き
  (define (make-from-real-imag x y)
    ((get 'make-from-real-imag 'rectangular) x y))
  (define (make-from-mag-ang r a)
    ((get 'make-from-mag-ang 'polar) r a))

  ;; 内部手続き
  (define (add-complex z1 z2)
    (make-from-real-imag (+ (real-part z1) (real-part z2))
                         (+ (imag-part z1) (imag-part z2))))
  (define (sub-complex z1 z2)
    (make-from-real-imag (- (real-part z1) (real-part z2))
                         (- (imag-part z1) (imag-part z2))))
  (define (mul-complex z1 z2)
    (make-from-mag-ang (* (magnitude z1) (magnitude z2))
                       (+ (angle z1) (angle z2))))
  (define (div-complex z1 z2)
    (make-from-mag-ang (/ (magnitude z1) (magnitude z2))
                       (- (angle z1) (angle z2))))

  ;; システムの他の部分へのインターフェース
  (define (tag z) (attach-tag 'complex z))
  (put 'add '(complex complex)
       (lambda (z1 z2) (tag (add-complex z1 z2))))
  (put 'sub '(complex complex)
       (lambda (z1 z2) (tag (sub-complex z1 z2))))
  (put 'mul '(complex complex)
       (lambda (z1 z2) (tag (mul-complex z1 z2))))
  (put 'div '(complex complex)
       (lambda (z1 z2) (tag (div-complex z1 z2))))

  (put 'make-from-real-imag 'complex
       (lambda (x y) (tag (make-from-real-imag x y))))
  (put 'make-from-mag-ang 'complex
       (lambda (r a) (tag (make-from-mag-ang r a))))
  (put 'real-part '(complex) real-part)
  (put 'imag-part '(complex) imag-part)
  (put 'magnitude '(complex) magnitude)
  (put 'angle '(complex) angle)
  (put 'equ? '(complex complex) equ?)
  (put '=zero? '(complex) =zero?)
  'done)

;;;;;

(define (add x . y) (apply-generic-kai 'add (cons x y)))
(define (sub x y) (apply-generic 'sub x y))
(define (mul x y) (apply-generic 'mul x y))
(define (div x y) (apply-generic 'div x y))

(define (numer r) (apply-generic 'numer r))
(define (denom r) (apply-generic 'denom r))

(define (real-part z) (apply-generic 'real-part z))
(define (imag-part z) (apply-generic 'imag-part z))
(define (magnitude z) (apply-generic 'magnitude z))
(define (angle z) (apply-generic 'angle z))

;;;;;

(define (make-scheme-number n)
  ((get 'make 'scheme-number) n))

(define (make-rational n d)
  ((get 'make 'rational) n d))

(define (make-complex-from-real-imag x y)
  ((get 'make-from-real-imag 'complex) x y))

(define (make-complex-from-mag-ang r a)
  ((get 'make-from-mag-ang 'complex) r a))

(define (equ? x y) (apply-generic 'equ? x y))
(define (=zero? x) (apply-generic '=zero? x))
(define (exp x y) (apply-generic 'exp x y))

;;;;;

(define (scheme-number->rational n)
  (make-rational (contents n) 1))

(define (scheme-number->complex n)
  (make-complex-from-real-imag (contents n) 0))

(define (rational->complex rat)
  (make-complex-from-real-imag (/ (numer rat) (denom rat)) 0))

(put-coercion 'scheme-number 'rational scheme-number->rational)
(put-coercion 'scheme-number 'complex scheme-number->complex)
(put-coercion 'rational 'complex rational->complex)

;;;;;

(put-conversion 'raise 'scheme-number scheme-number->rational)
(put-conversion 'raise 'rational rational->complex)

(define (raise x)
  (let ((proc (get-conversion 'raise (type-tag x))))
    (print ";;RAISE x=" x)
    (if proc
        (proc x)
        (error "cannot raise -- RAISE" x))))
;;;;;

(put-height 'scheme-number 10)
(put-height 'rational 20)
(put-height 'complex 30)

;;;;;

(install-scheme-number-package)
(install-rational-package)
(install-rectangular-package)
(install-polar-package)
(install-complex-package)