2.5.1 汎用算術演算その2

問題 2.79

equ? を実装せよ。

(define *table* '())

(define (get op type)
  (let ((item (filter (lambda (x)
                        (and (eq? (car x) op)
                             (equal? (cadr x) type)))
                      *table*)))
    (if (null? item)
        #f
        (caddr (car item)))))

(define (put op type item)
  (set! *table*
        (cons (list op type item)
              (filter (lambda (x)
                        (not (and (eq? (car x) op)
                                  (equal? (cadr x) type))))
                      *table*))))

;;;;;

(define (attach-tag type-tag contents)
  (if (eq? type-tag 'scheme-number)
      contents
      (cons type-tag contents)))

(define (type-tag datum)
  (cond ((number? datum) 'scheme-number)
        ((pair? datum) (car datum))
        (else
         (error "Bad tagged datum -- TYPE-TAG" datum))))

(define (contents datum)
  (cond ((number? datum) datum)
        ((pair? datum) (cdr datum))
        (else
         (error "Bad tagged datum -- CONTENTS" datum))))

(define (apply-generic op . args)
  (let ((type-tags (map type-tag args)))
    (let ((proc (get op type-tags)))
      (print ";APPLY-GENERIC op=" op " args=" args)
      (if proc
          (apply proc (map contents args))
          (error
            "No method for these types -- APPLY-GENERIC"
            (list op type-tags))))))

;;;;;

(define (install-scheme-number-package)
  ;; システムの他の部分へのインターフェース
  (define (tag x)
    (attach-tag 'scheme-number x))
  (put 'add '(scheme-number scheme-number)
       (lambda (x y) (tag (+ x y))))
  (put 'sub '(scheme-number scheme-number)
       (lambda (x y) (tag (- x y))))
  (put 'mul '(scheme-number scheme-number)
       (lambda (x y) (tag (* x y))))
  (put 'div '(scheme-number scheme-number)
       (lambda (x y) (tag (/ x y))))
  (put 'equ? '(scheme-number scheme-number)
       (lambda (x y) (tag (= x y))))
  
  (put 'make 'scheme-number
       (lambda (x) (tag x)))
  'done)

(define (install-rational-package)
  ;; 内部手続き
  (define (numer x) (car x))
  (define (denom x) (cdr x))
  (define (make-rat n d)
    (let ((g (gcd n d)))
      (cons (/ n g) (/ d g))))
  (define (add-rat x y)
    (make-rat (+ (* (numer x) (denom y))
                 (* (numer y) (denom x)))
              (* (denom x) (denom y))))
  (define (sub-rat x y)
    (make-rat (- (* (numer x) (denom y))
                 (* (numer y) (denom x)))
              (* (denom x) (denom y))))
  (define (mul-rat x y)
    (make-rat (* (numer x) (numer y))
              (* (denom x) (denom y))))
  (define (div-rat x y)
    (make-rat (* (numer x) (denom y))
              (* (denom x) (numer y))))
  (define (equ? x y)
    (and (= (numer x) (numer y))
         (= (denom x) (denom y))))
  
  ;; システムの他の部分へのインターフェース
  (define (tag x) (attach-tag 'rational x))
  (put 'add '(rational rational)
       (lambda (x y) (tag (add-rat x y))))
  (put 'sub '(rational rational)
       (lambda (x y) (tag (sub-rat x y))))
  (put 'mul '(rational rational)
       (lambda (x y) (tag (mul-rat x y))))
  (put 'div '(rational rational)
       (lambda (x y) (tag (div-rat x y))))
  (put 'equ? '(rational rational)
       (lambda (x y) (equ? x y)))

  (put 'make 'rational
       (lambda (n d) (tag (make-rat n d))))
  'done)

(define (install-rectangular-package)
  ;; 内部手続き
  (define (real-part z) (car z))
  (define (imag-part z) (cdr z))
  (define (make-from-real-imag x y) (cons x y))
  (define (magnitude z)
    (sqrt (+ (square (real-part z))
             (square (imag-part z)))))
  (define (angle z)
    (atan (imag-part z) (real-part z)))
  (define (equ? z1 z2)
    (and (= (real-part z1) (real-part z2))
         (= (imag-part z1) (imag-part z2))))
  (define (make-from-mag-ang r a) 
    (cons (* r (cos a)) (* r (sin a))))
  
  ;; システムの他の部分とのインターフェース
  (define (tag x) (attach-tag 'rectangular x))
  (put 'real-part '(rectangular) real-part)
  (put 'imag-part '(rectangular) imag-part)
  (put 'magnitude '(rectangular) magnitude)
  (put 'angle '(rectangular) angle)
  (put 'equ? '(rectangular rectangular)
       (lambda (z1 z2) (equ? z1 z2)))
   
  (put 'make-from-real-imag 'rectangular 
       (lambda (x y) (tag (make-from-real-imag x y))))
  (put 'make-from-mag-ang 'rectangular 
       (lambda (r a) (tag (make-from-mag-ang r a))))
  'done)

(define (install-polar-package)
   ;; 内部手続き
  (define (magnitude z) (car z))
  (define (angle z) (cdr z))
  (define (make-from-mag-ang r a) (cons r a))
  (define (real-part z)
    (* (magnitude z) (cos (angle z))))
  (define (imag-part z)
    (* (magnitude z) (sin (angle z))))
  (define (equ? z1 z2)
    (and (= (magnitude z1) (magnitude z2))
         (= (angle z1) (angle z2))))
  (define (make-from-real-imag x y) 
    (cons (sqrt (+ (square x) (square y)))
          (atan y x)))

   ;; システムの他の部分とのインターフェース
  (define (tag x) (attach-tag 'polar x))
  (put 'real-part '(polar) real-part)
  (put 'imag-part '(polar) imag-part)
  (put 'magnitude '(polar) magnitude)
  (put 'angle '(polar) angle)
  (put 'equ? '(polar polar)
       (lambda (z1 z2) (equ? z1 z2)))
  
  (put 'make-from-real-imag 'polar
       (lambda (x y) (tag (make-from-real-imag x y))))
  (put 'make-from-mag-ang 'polar 
       (lambda (r a) (tag (make-from-mag-ang r a))))
  
  'done)

(define (install-complex-package)
  ;; 直交座標と極座標パッケージから取り入れた手続き
  (define (make-from-real-imag x y)
    ((get 'make-from-real-imag 'rectangular) x y))
  (define (make-from-mag-ang r a)
    ((get 'make-from-mag-ang 'polar) r a))

  ;; 内部手続き
  (define (add-complex z1 z2)
    (make-from-real-imag (+ (real-part z1) (real-part z2))
                         (+ (imag-part z1) (imag-part z2))))
  (define (sub-complex z1 z2)
    (make-from-real-imag (- (real-part z1) (real-part z2))
                         (- (imag-part z1) (imag-part z2))))
  (define (mul-complex z1 z2)
    (make-from-mag-ang (* (magnitude z1) (magnitude z2))
                       (+ (angle z1) (angle z2))))
  (define (div-complex z1 z2)
    (make-from-mag-ang (/ (magnitude z1) (magnitude z2))
                       (- (angle z1) (angle z2))))

  ;; システムの他の部分へのインターフェース
  (define (tag z) (attach-tag 'complex z))
  (put 'add '(complex complex)
       (lambda (z1 z2) (tag (add-complex z1 z2))))
  (put 'sub '(complex complex)
       (lambda (z1 z2) (tag (sub-complex z1 z2))))
  (put 'mul '(complex complex)
       (lambda (z1 z2) (tag (mul-complex z1 z2))))
  (put 'div '(complex complex)
       (lambda (z1 z2) (tag (div-complex z1 z2))))

  (put 'make-from-real-imag 'complex
       (lambda (x y) (tag (make-from-real-imag x y))))
  (put 'make-from-mag-ang 'complex
       (lambda (r a) (tag (make-from-mag-ang r a))))
  (put 'real-part '(complex) real-part)
  (put 'imag-part '(complex) imag-part)
  (put 'magnitude '(complex) magnitude)
  (put 'angle '(complex) angle)
  (put 'equ? '(complex complex) equ?)
  (put 'equ? '(polar rectangular)
       (lambda (pol rec)
         (equ? (cons 'polar pol)
               (make-from-mag-ang (magnitude (cons 'rectangular rec))
                                  (angle (cons 'rectangular rec))))))
  (put 'equ? '(rectangular polar)
       (lambda (rec pol)
         (equ? (cons 'polar pol) (cons 'rectangular rec))))
  'done)
  
;;;;;

(define (add x y) (apply-generic 'add x y))
(define (sub x y) (apply-generic 'sub x y))
(define (mul x y) (apply-generic 'mul x y))
(define (div x y) (apply-generic 'div x y))

(define (real-part z) (apply-generic 'real-part z))
(define (imag-part z) (apply-generic 'imag-part z))
(define (magnitude z) (apply-generic 'magnitude z))
(define (angle z) (apply-generic 'angle z))

;;;;;

(define (make-scheme-number n)
  ((get 'make 'scheme-number) n))

(define (make-rational n d)
  ((get 'make 'rational) n d))

(define (make-complex-from-real-imag x y)
  ((get 'make-from-real-imag 'complex) x y))

(define (make-complex-from-mag-ang r a)
  ((get 'make-from-mag-ang 'complex) r a))

(define (equ? x y) (apply-generic 'equ? x y))

;;;;;

(install-scheme-number-package)
(install-rational-package)
(install-rectangular-package)
(install-polar-package)
(install-complex-package)

型が異なる場合に対応していませんが、
Complex に関してだけ Rectangular と Polar に対応しています。

Complex パッケージに細工を施していますが、実に微妙な実装です。
また、すべての型の組み合わせを実装するのは大変ですし、
将来型が増えたら目も当てられません。ダメダメです。

そのためのデータ主導プログラミングのはずだったのに、
どうしてこうなった!orz

実は、異なる型同士の演算方法については次節で解決方法を習います。
今はサスマン先生の手のひらの上で転がされておきましょうw

polar を rectangular に寄せると誤差が出るため、rectangular を polar に寄せることにした。
(※ polar の値は rectangular を元に作っており、すでに誤差が出ているので、たまたま問題化しないだけである)

真パターン
(equ? (make-complex-from-real-imag 1 2) (make-complex-from-real-imag 1 2))
(equ? (make-complex-from-mag-ang 2.23606797749979 1.1071487177940904) (make-complex-from-mag-ang 2.23606797749979 1.1071487177940904))
(equ? (make-complex-from-real-imag 1 2) (make-complex-from-mag-ang 2.23606797749979 1.1071487177940904))
(equ? (make-complex-from-mag-ang 2.23606797749979 1.1071487177940904) (make-complex-from-real-imag 1 2))

偽パターン
(equ? (make-complex-from-real-imag 1 2) (make-complex-from-real-imag 3 4))
(equ? (make-complex-from-mag-ang 1.1 2.2) (make-complex-from-mag-ang 3.3 4.4))
(equ? (make-complex-from-real-imag 1 2) (make-complex-from-mag-ang 3.3 4.4))
(equ? (make-complex-from-mag-ang 3.3 4.4) (make-complex-from-real-imag 1 2))

問題 2.80
=zero? を実装せよ。

(define *table* '())

(define (get op type)
  (let ((item (filter (lambda (x)
                        (and (eq? (car x) op)
                             (equal? (cadr x) type)))
                      *table*)))
    (if (null? item)
        #f
        (caddr (car item)))))

(define (put op type item)
  (set! *table*
        (cons (list op type item)
              (filter (lambda (x)
                        (not (and (eq? (car x) op)
                                  (equal? (cadr x) type))))
                      *table*))))

;;;;;

(define (attach-tag type-tag contents)
  (if (eq? type-tag 'scheme-number)
      contents
      (cons type-tag contents)))

(define (type-tag datum)
  (cond ((number? datum) 'scheme-number)
        ((pair? datum) (car datum))
        (else
         (error "Bad tagged datum -- TYPE-TAG" datum))))

(define (contents datum)
  (cond ((number? datum) datum)
        ((pair? datum) (cdr datum))
        (else
         (error "Bad tagged datum -- CONTENTS" datum))))

(define (apply-generic op . args)
  (let ((type-tags (map type-tag args)))
    (let ((proc (get op type-tags)))
      (print ";APPLY-GENERIC op=" op " args=" args)
      (if proc
          (apply proc (map contents args))
          (error
            "No method for these types -- APPLY-GENERIC"
            (list op type-tags))))))

;;;;;

(define (install-scheme-number-package)
  ;; システムの他の部分へのインターフェース
  (define (tag x)
    (attach-tag 'scheme-number x))
  (put 'add '(scheme-number scheme-number)
       (lambda (x y) (tag (+ x y))))
  (put 'sub '(scheme-number scheme-number)
       (lambda (x y) (tag (- x y))))
  (put 'mul '(scheme-number scheme-number)
       (lambda (x y) (tag (* x y))))
  (put 'div '(scheme-number scheme-number)
       (lambda (x y) (tag (/ x y))))
  (put 'equ? '(scheme-number scheme-number)
       (lambda (x y) (tag (= x y))))
  (put '=zero? '(scheme-number)
       (lambda (x) (zero? x)))
  
  (put 'make 'scheme-number
       (lambda (x) (tag x)))
  'done)

(define (install-rational-package)
  ;; 内部手続き
  (define (numer x) (car x))
  (define (denom x) (cdr x))
  (define (make-rat n d)
    (if (= d 0)
        (error "zero denominator -- MAKE-RAT")
        (let ((g (gcd n d)))
          (cons (/ n g) (/ d g)))))
  (define (add-rat x y)
    (make-rat (+ (* (numer x) (denom y))
                 (* (numer y) (denom x)))
              (* (denom x) (denom y))))
  (define (sub-rat x y)
    (make-rat (- (* (numer x) (denom y))
                 (* (numer y) (denom x)))
              (* (denom x) (denom y))))
  (define (mul-rat x y)
    (make-rat (* (numer x) (numer y))
              (* (denom x) (denom y))))
  (define (div-rat x y)
    (make-rat (* (numer x) (denom y))
              (* (denom x) (numer y))))
  (define (equ? x y)
    (and (= (numer x) (numer y))
         (= (denom x) (denom y))))
  (define (=zero? x) (zero? (numer x)))
  
  ;; システムの他の部分へのインターフェース
  (define (tag x) (attach-tag 'rational x))
  (put 'add '(rational rational)
       (lambda (x y) (tag (add-rat x y))))
  (put 'sub '(rational rational)
       (lambda (x y) (tag (sub-rat x y))))
  (put 'mul '(rational rational)
       (lambda (x y) (tag (mul-rat x y))))
  (put 'div '(rational rational)
       (lambda (x y) (tag (div-rat x y))))
  (put 'equ? '(rational rational)
       (lambda (x y) (equ? x y)))
  (put '=zero? '(rational)
       (lambda (x) (=zero? x)))

  (put 'make 'rational
       (lambda (n d) (tag (make-rat n d))))
  'done)

(define (install-rectangular-package)
  ;; 内部手続き
  (define (real-part z) (car z))
  (define (imag-part z) (cdr z))
  (define (make-from-real-imag x y) (cons x y))
  (define (magnitude z)
    (sqrt (+ (square (real-part z))
             (square (imag-part z)))))
  (define (angle z)
    (atan (imag-part z) (real-part z)))
  (define (equ? z1 z2)
    (and (= (real-part z1) (real-part z2))
         (= (imag-part z1) (imag-part z2))))
  (define (=zero? z)
    (and (zero? (real-part z)) (zero? (imag-part z))))

  (define (make-from-mag-ang r a) 
    (cons (* r (cos a)) (* r (sin a))))
  
  ;; システムの他の部分とのインターフェース
  (define (tag x) (attach-tag 'rectangular x))
  (put 'real-part '(rectangular) real-part)
  (put 'imag-part '(rectangular) imag-part)
  (put 'magnitude '(rectangular) magnitude)
  (put 'angle '(rectangular) angle)
  (put 'equ? '(rectangular rectangular)
       (lambda (z1 z2) (equ? z1 z2)))
  (put '=zero? '(rectangular)
       (lambda (z) (=zero? z)))
   
  (put 'make-from-real-imag 'rectangular 
       (lambda (x y) (tag (make-from-real-imag x y))))
  (put 'make-from-mag-ang 'rectangular 
       (lambda (r a) (tag (make-from-mag-ang r a))))
  'done)

(define (install-polar-package)
   ;; 内部手続き
  (define (magnitude z) (car z))
  (define (angle z) (cdr z))
  (define (make-from-mag-ang r a) (cons r a))
  (define (real-part z)
    (* (magnitude z) (cos (angle z))))
  (define (imag-part z)
    (* (magnitude z) (sin (angle z))))
  (define (equ? z1 z2)
    (and (= (magnitude z1) (magnitude z2))
         (= (angle z1) (angle z2))))
  (define (=zero? z) (zero? (magnitude z)))
  (define (make-from-real-imag x y) 
    (cons (sqrt (+ (square x) (square y)))
          (atan y x)))

   ;; システムの他の部分とのインターフェース
  (define (tag x) (attach-tag 'polar x))
  (put 'real-part '(polar) real-part)
  (put 'imag-part '(polar) imag-part)
  (put 'magnitude '(polar) magnitude)
  (put 'angle '(polar) angle)
  (put 'equ? '(polar polar)
       (lambda (z1 z2) (equ? z1 z2)))
  (put '=zero? '(polar)
       (lambda (z) (=zero? z)))
  
  (put 'make-from-real-imag 'polar
       (lambda (x y) (tag (make-from-real-imag x y))))
  (put 'make-from-mag-ang 'polar 
       (lambda (r a) (tag (make-from-mag-ang r a))))
  
  'done)

(define (install-complex-package)
  ;; 直交座標と極座標パッケージから取り入れた手続き
  (define (make-from-real-imag x y)
    ((get 'make-from-real-imag 'rectangular) x y))
  (define (make-from-mag-ang r a)
    ((get 'make-from-mag-ang 'polar) r a))

  ;; 内部手続き
  (define (add-complex z1 z2)
    (make-from-real-imag (+ (real-part z1) (real-part z2))
                         (+ (imag-part z1) (imag-part z2))))
  (define (sub-complex z1 z2)
    (make-from-real-imag (- (real-part z1) (real-part z2))
                         (- (imag-part z1) (imag-part z2))))
  (define (mul-complex z1 z2)
    (make-from-mag-ang (* (magnitude z1) (magnitude z2))
                       (+ (angle z1) (angle z2))))
  (define (div-complex z1 z2)
    (make-from-mag-ang (/ (magnitude z1) (magnitude z2))
                       (- (angle z1) (angle z2))))

  ;; システムの他の部分へのインターフェース
  (define (tag z) (attach-tag 'complex z))
  (put 'add '(complex complex)
       (lambda (z1 z2) (tag (add-complex z1 z2))))
  (put 'sub '(complex complex)
       (lambda (z1 z2) (tag (sub-complex z1 z2))))
  (put 'mul '(complex complex)
       (lambda (z1 z2) (tag (mul-complex z1 z2))))
  (put 'div '(complex complex)
       (lambda (z1 z2) (tag (div-complex z1 z2))))

  (put 'make-from-real-imag 'complex
       (lambda (x y) (tag (make-from-real-imag x y))))
  (put 'make-from-mag-ang 'complex
       (lambda (r a) (tag (make-from-mag-ang r a))))
  (put 'real-part '(complex) real-part)
  (put 'imag-part '(complex) imag-part)
  (put 'magnitude '(complex) magnitude)
  (put 'angle '(complex) angle)
  (put 'equ? '(complex complex) equ?)
  (put 'equ? '(polar rectangular)
       (lambda (pol rec)
         (equ? (cons 'polar pol)
               (make-from-mag-ang (magnitude (cons 'rectangular rec))
                                  (angle (cons 'rectangular rec))))))
  (put 'equ? '(rectangular polar)
       (lambda (rec pol)
         (equ? (cons 'polar pol) (cons 'rectangular rec))))
  (put '=zero? '(complex) =zero?)
  'done)
  
;;;;;

(define (add x y) (apply-generic 'add x y))
(define (sub x y) (apply-generic 'sub x y))
(define (mul x y) (apply-generic 'mul x y))
(define (div x y) (apply-generic 'div x y))

(define (real-part z) (apply-generic 'real-part z))
(define (imag-part z) (apply-generic 'imag-part z))
(define (magnitude z) (apply-generic 'magnitude z))
(define (angle z) (apply-generic 'angle z))

;;;;;

(define (make-scheme-number n)
  ((get 'make 'scheme-number) n))

(define (make-rational n d)
  ((get 'make 'rational) n d))

(define (make-complex-from-real-imag x y)
  ((get 'make-from-real-imag 'complex) x y))

(define (make-complex-from-mag-ang r a)
  ((get 'make-from-mag-ang 'complex) r a))

(define (equ? x y) (apply-generic 'equ? x y))
(define (=zero? x) (apply-generic '=zero? x))

;;;;;

(install-scheme-number-package)
(install-rational-package)
(install-rectangular-package)
(install-polar-package)
(install-complex-package)

こちらは equ? と違い引数が 1 つなので難しい事はありません。
ただし、各型のゼロ判定については多少の数学の知識が必要です。
各型は以下のように判定します。

数値 : zero? で判定。
rational : numer が 0 なら 0。denom が 0 はありえない(make-rat 時にエラー)。
rectangular : real-part が 0 かつ imag-part が 0 なら 0。
polar : magnitude が 0 なら 0。magnitude が 0 の場合 angle は意味を為さない。
complex : rectangular もしくは polar に判定を任せる。